Custom Functions
Custom functions can now be automatically invoked by the model based on context, streamlining business logic integration.
This example code shows you how to leverage the OpenAI client and SeekrFlow's inference engine to create a custom unit conversion tool that can be configured dynamically.
Primary use cases for custom functions are:
- Fetching up-to-date data to incorporate into the model's response (RAG): Stock market prices, exchange rates
- Taking actions: Calling APIs, submitting forms, or taking agentic workflow actions (escalating a ticket).
Create the client and make an API request
import os
import openai
# Set the API key
os.environ["OPENAI_API_KEY"] = "YOUR API KEY"
# Create the OpenAI client and retrieve the API key
client = openai.OpenAI(
base_url="<https://flow.seekr.com/v1/inference">,
api_key=os.environ.get("OPENAI_API_KEY"
)
# Send a request to the OpenAI API to leverage the specified Llama model as a unit conversion tool.
response = client.chat.completions.create(
model="meta-llama/Llama-3.1-8B-Instruct",
stream=False,
messages=[{
"role": "user",
"content": "Convert from 5 kilometers to miles"
}],
max_tokens=100,
tools=\[{
"type": "function",
"function": {
"name": "convert_units",
"description": "Convert between different units of measurement",
"parameters": {
"type": "object",
"properties": {
"value": {"type": "number"},
"from_unit": {"type": "string"},
"to_unit": {"type": "string"}
},
"required": ["value", "from_unit", "to_unit"]
}
}
}]
)
Define and register a function from JSON
# Parse json and register
def register_from_json(json_obj):
code = f"def {json_obj['name']}({', '.join(json_obj['args'])}):\\n{json_obj['docstring']}\\n{json_obj['code']}"
print(code)
namespace = {}
exec(code, namespace)
return namespace\[json_obj["name"]]
Run the unit conversion tool
This function executes the tool call, given an LLM response object.
# Execute our tool
def execute_tool_call(resp):
tool_call = resp.choices[0].message.tool_calls[0]
func_name = tool_call.function.name
args = tool_call.function.arguments
func = globals().get(func_name)
if not func:
raise ValueError(f"Function {func_name} not found")
if isinstance(args, str):
import json
args = json.loads(args)
return func(**args)
execute_tool_call(response)
Sample output
This is the output expected in response to the request made earlier to convert 5 kilometers to miles.
3.106855
Updated 3 days ago